3개의 강의가 검색되었습니다.
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 이주용 소속기관 서울대학교 과목명 RDKit의 기초와 이를 이용한 화학정보학 실습 강의시간 10 학습목표 1. RDKit의 기본 기능을 익혀 기본적인 분자 입출력 및 물성 분석을 할 수 있다2. Cheminformatics의 기본 개념을 이해하고 실제로 최신 연구에서 어떻게 사용되고 있는지 살펴본다 강의 선수과목 및 준비사항입니다. 선수과목 파이썬, 주피터 노트북, anaconda 또는 venv 같은 가상환경 생성 프로그램 참고자료 www.rdkit.org, 핸즈온 머신러닝 (한빛 미디어) 준비사항 파이썬, 주피터 노트북, 아나콘다 패키지 관리자가 설치된 PC 필요
참여자수
178
화학 & 화학정보학|
강의시간 강의내용 실습여부 1 천연물 의약품 개발을 위한 예측기술/DB 및 모델링 접근법 소개 - 천연물 개요 및 의약품 개발사례 - 천연물 의약품 개발 연구에 활용 가능한 예측기술 - 천연물 기반 데이터베이스 - 예측모델 개발을 위한 모델링 접근법 2 천연물 데이터 수집 - 천연물 DB 데이터 수집 - PubChem DB를 활용한 분자구조 데이터 수집 - PubChem DB를 활용한 Bioassay 데이터 수집 O 3 예측모델 개발을 위한 구조기반 분자표현자 계산 - 분자표현자 기법 소개 - RDKit을 활용한 분자표현자 계산 - Mordred를 활용한 분자표현자 계산 - PaDELPy를 활용한 분자표현자 계산 - NC-MFP를 활용한 분자표현자 계산 O 4 예측모델 개발을 위한 데이터 전처리 - 데이터 정규화 및 표준화 - 데이터 불균형 문제를 위한 데이터 샘플링 - 데이터 전처리 및 샘플링 기법 구현 O 5 딥러닝 기반 예측모델 개발 및 활용 - 딥러닝 알고리즘 소개 - DNN 알고리즘 구현 - DNN 기반 정량/정성 예측모델 개발 및 성능평가 - DNN 예측모델 활용 O
51
강의 소개 및 개요입니다. 성명 김동섭 소속기관 KAIST 과목명 화학정보학을 위한 Deep learning 기술 강의시간 3 학습목표 1. Chemoinformatics 분야의 DL2. QSAR에 사용되는 DL 모델3. 연구사례
33