Professor
-
Learning Period
11-27-2024 ~ 12-31-2029
Course Introduction
목차 (강의시간) 강의내용 실습여부 교수자 1 Streamlit 소개 Streamlit의 기본 개념과 AI/ML 프로젝트에서의 활용 사례 탐구 MolScore Library 의 의 주요 구성 요소 및 역할 소개 Python 환경 설정과 필수 라이브러리 설치 X 신동욱 2 실습: MoleScore 사용한 화합물 생성 목표 설정 Multi-Parameter 설정을 통한 생성 목표 정의 사용자 정의 Scoring Function 클래스 작성 O 신동욱 3 실습: MolScore을 활용한 화합물 학습 사용자 정의 BenchMark 구성 방법 학습 커리큘럼 학습 설정 / 리플레이 버퍼 활용 O 신동욱 4 실습 화합물 : 평가 결과 시각화 및 확장 Streamlit 컴포넌트를 활용한 생성 결과 시각화 MolScore 기본 모니터링 화면 클론코딩 및 응용 O 신동욱 5 실습: Streamlit 기반 Web App 개발 및 배포 스코어링 결과 시각화 및 데이터 저장 결과물 배포 및 공유 O 신동욱
Students
4
인공지능 & 프로그래밍|
Professor
-
Learning Period
10-11-2024 ~ 12-31-2029
Course Introduction
성명 박대찬 소속기관 아주대학교 강의 명 (주제) NGS와 AI를 이용한 항체 레퍼토리 (repertoire) 분석 학습목표 생체 내에서 B 세포의 발달 및 B cell receptor (BCR 또는 항체)의 다양성과 항원 특이성이 확보되는 면역학 기초를 배운다. 천문학적인 BCR 다양성 분석을 위해 NGS 기반 BCR 시퀀 싱 데이터를 생산하는 최신 연구 기법을 학습한다. 생명정보학적 분석법으로 BCR의 V gene usage와 complementarity-determining regions (CDR) 서열을 동정하는 법을 배우고 딥러닝으 로 대규모 DNA 서열과 아미노산 서열을 학습하는 방법을 배운다. 분야 Bio 단계 기초
Students
29
인공지능 & 프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이일구 소속기관 팜캐드 과목명 Deep Learning based Molecular Generation 강의시간 4 학습목표 1. De novo molecular generation 모델의 핵심 방법을 학습한다.2. pytorch 를 이용하여 RNN, ChemicalVAE 모델을 직접 구현한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 딥러닝 기초 (CNN, RNN, 뉴럴넷 학습 이론)- Pytorch 기초 참고자료 - Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks- Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules 준비사항 - 노트북 사용- python3 및 pytorch 사용- jupyter notebook 사용
Students
56
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김현욱 소속기관 KAIST 과목명 Disease-Target-Drug relationship analysis from multi-dimensional data 강의시간 1시간 학습목표 1. 소프트웨어 사용을 위한 컴퓨팅 환경 학습2. 약물상호작용, 약물부작용 등 다양한 약물반응의 예측을 위한 머신러닝 기반 프로그램 소개 강의 선수과목 및 준비사항입니다. 선수과목 AI 기초 (Python programing, machine learning); Chemoinformatics 분야 기초 (molecular representation 관련) 및 중급 과목 (특히 RDKit 관련) 참고자료 프로그램 관련 논문들 준비사항 -
Students
35
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 류성옥 소속기관 Galux 과목명 Graph Neural Networks for Molecular Property Prediction 강의시간 7 학습목표 1. Python 언어의 기본 문법을 익혀 기본적인 코딩을 할 수 있다2. Python 프로그래밍에서 필요한 기초적인 변수, 연산, 문자열, 조건문, 반복문, 함수 등을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 참고자료 * GNN github repository, https://github.com/SeongokRyu/Graph-neural-networks* Bayesian learning github repository, https://github.com/SeongokRyu/Bayesian-deep-learning* Reliable GNN github repository, https://github.com/AITRICS/mol_reliable_gnn 준비사항 PyTorch 를 설치 및 활용가능한 노트북, 혹은 Google Colab 활용Dataset은 MoleculeNet 및 Therapeutic Data Commons 의 open benchmark를 활용예정
Students
67
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이유한 소속기관 카카오브레인 과목명 그래프 트랜스포머를 활용한 분자물성 예측 강의시간 1시간 학습목표 Attention 알고리즘을 이해한다. 그래프 데이터에 attention이 어떻게 쓰이는지 이해하고, 실습으로 이해도를 높인다. 강의 선수과목 및 준비사항입니다. 선수과목 Attention for Deep Learning 참고자료 A Generalization of Transformer Networks to Graphs (https://arxiv.org/abs/2012.09699?amp=1) 준비사항 우분투 환경
Students
49
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의시간 강의내용 실습여부 1 질병 멀티오믹스 데이터에 클러스터링 및 네트워크 분석을 활용한 최신 연구 2 멀티오믹스 데이터 클러스터링 분석의 기초 개념과 적용 사례 3 멀티 오믹스 데이터에 대한 네트워크 분석 적용의 기초 개념과 적용 사례 4 NMF 클러스터링 중심의 멀티오믹스 데이터 클러스터링 분석 실습 O 5 MOFA tool을 활용한 멀티오믹스 데이터 클러스터링 분석 및 해석 실습 O 6 PHONEMES tool을 활용한 멀티오믹스 데이터 네트워크 분석 및 해석 실습 O
Students
33
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 허승룡 소속기관 굿인텔리전스 과목명 단백질 서열정렬 알고리즘 구현 실습 강의시간 2시간 학습목표 단백질 서열 정렬에 대한 이해와 pairwise alignment에 대한 프로그램을 구현 할 수 있다. 강의 선수과목 및 준비사항입니다. 선수과목 Python Programming 참고자료 https://gist.github.com/num3ric/1222752 https://3n.wikipedia.org/wiki/Needleman-Wunsch_algorithm https://en.wikipedia.org/wiki/Smith-Waterman_algorithm 준비사항 python3 설치, Linux terminal 환경
Students
24
생물학 & 생물정보학|
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김재훈 소속기관 카카오브레인 과목명 단백질 언어 모델을 활용한 컨텍트 예측 강의시간 2시간 학습목표 Pre-training 개념을 이해한다. 단백질 서열 데이터를 전처리하여 딥러닝 언어 모델에 학습시킬 수 있다. 학습된 결과를 예측모델에 적용할 수 있다. 강의 선수과목 및 준비사항입니다. 선수과목 Python 참고자료 논문: Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences 준비사항 Jupyter notebook 환경
Students
36
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김현욱 소속기관 한국과학기술원(KAIST) 과목명 바이오 네트워크 모델링 강의시간 3시간 학습목표 약물표적 예측을 위한 게놈 수준의 대사모델 구축 및 시뮬레이션에 대한소개 깅의 선수과목 및 준비사항 입니다. 선수과목 생화학 및 프로그래밍에 대한 기본 지식 참고자료 준비사항 노트북 등 컴퓨터
Students
23
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이상완 소속기관 KAIST 과목명 인공지능 신약개발을 위한 강화학습 기초 강의시간 6시간 학습목표 본 강의에서는 생물학적 시스템과 같은 복잡한 환경과의 상호작용을 통해 개발자가 설정한 조건을 만족시키는 최적의 시퀀스나 환경 제어 전략을 탐색할 수 있는 강화학습 이론과 기초 알고리즘을 다룬다. 강의 선수과목 및 준비사항입니다. 선수과목 선형대수 기초 참고자료 Sutton and Barto, Reinforcement learning: an introduction 준비사항 강의자료
Students
33
인공지능 & 프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 이일구 소속기관 팜캐드 과목명 인공지능을 위한 확률통계 강의시간 5시간 학습목표 인공지능을 위한 기초수학인 기초 확률통계를 학습한다. 기초 확률통계에서는 확률변수와 확률분포가 무엇인지 아는 것 부터 머신러닝에서 많이 쓰이는 Cross entropy, KL divergence까지 학습한다. 그리고 실제 코딩을 통해 이론에서 실습까지 진행한다. 강의 선수과목 및 준비사항입니다.
Students
41
인공지능 & 프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 최윤재 소속기관 한국과학기술원 과목명 인공지능을 활용한 EMR 데이터 분석 강의시간 6시간 학습목표 전자의무기록의 데이터 구조에 대한 이해 전자의무기록 기반 예측 태스크 이해 전자의무기록의 데이터 전처리 과정 이해 전자의무기록 기반 딥러닝 예측 모델 이해 강의선수 과목 및 준비사항입니다. 선수과목 기계학습 기초 참고자료 해당없음 준비사항 해당없음
Students
30
임상개발 & 임상데이터|