교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 남호정 소속기관 GIST 과목명 Lecture : AI in Predicting Drug-protein Interaction(sequence-based) 강의시간 2 학습목표 1. 단백질 서열을 사용하여 화합물-단백질 상호작용을 예측하는 다양한 방법론을 학습한다.2. 기계학습, 딥러닝 기반 화합물-단백질 상호작용 예측 모델들에 대해 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Deep Learning Advanced (inductive bias, self-supervised learning, semi-supervised learning, Attention, Transformeretc.)Graph Deep Learning(GCN, GAT, GIN, GGNN, MPNN, etc.) 참고자료 doi: 10.1093/bib/bbz157doi: 10.1093/bib/bbab046 준비사항 Colab 접속 가능 환경
참여자수
97
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김현욱 소속기관 KAIST 과목명 Disease-Target-Drug relationship analysis from multi-dimensional data 강의시간 1시간 학습목표 1. 소프트웨어 사용을 위한 컴퓨팅 환경 학습2. 약물상호작용, 약물부작용 등 다양한 약물반응의 예측을 위한 머신러닝 기반 프로그램 소개 강의 선수과목 및 준비사항입니다. 선수과목 AI 기초 (Python programing, machine learning); Chemoinformatics 분야 기초 (molecular representation 관련) 및 중급 과목 (특히 RDKit 관련) 참고자료 프로그램 관련 논문들 준비사항 -
참여자수
35
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김동섭 소속기관 KAIST 과목명 QSAR 강의시간 5 학습목표 1. QSAR 모델 개발 과정2. 화합물구조의 수식화와 Descriptors3. QSAR를 위한 기계학습법4. Bioactivity prediction5. Proteochemometric modeling
참여자수
116
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의시간 강의내용 실습여부 1 질병 멀티오믹스 데이터에 클러스터링 및 네트워크 분석을 활용한 최신 연구 2 멀티오믹스 데이터 클러스터링 분석의 기초 개념과 적용 사례 3 멀티 오믹스 데이터에 대한 네트워크 분석 적용의 기초 개념과 적용 사례 4 NMF 클러스터링 중심의 멀티오믹스 데이터 클러스터링 분석 실습 O 5 MOFA tool을 활용한 멀티오믹스 데이터 클러스터링 분석 및 해석 실습 O 6 PHONEMES tool을 활용한 멀티오믹스 데이터 네트워크 분석 및 해석 실습 O
참여자수
33
생물학 & 생물정보학|