교수자/개설자
-
학습기간
2024-11-27 ~ 2029-12-31
강좌소개
성명 국승호 소속기관 바이오넥서스(BIONEXUS) 강의 명 (주제) 의료이미지 기반 환자진단 및 바이오마커 탐색 학습목표 딥러닝을 활용한 의료이미지 분석의 기초 개념과 기법을 이해하고, 이를 통해 질병 진단 및 바이오마커 탐색을 위한 모델 설계 능력을 기른다. 다양한 의료 데이터를 활용하여 환자 맞춤형 진단 및 예측 모델을 개발하며, 실제 사례를 통해 딥러닝 기반 진단 모델의 응용 가능성과 한계를 파악한다. 분야 v AI v Bio □ Chem □ Drug 단계 심화
참여자수
10
인공지능 & 프로그래밍|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2024-10-11 ~ 2029-12-31
강좌소개
성명 박대찬 소속기관 아주대학교 강의 명 (주제) NGS와 AI를 이용한 항체 레퍼토리 (repertoire) 분석 학습목표 생체 내에서 B 세포의 발달 및 B cell receptor (BCR 또는 항체)의 다양성과 항원 특이성이 확보되는 면역학 기초를 배운다. 천문학적인 BCR 다양성 분석을 위해 NGS 기반 BCR 시퀀 싱 데이터를 생산하는 최신 연구 기법을 학습한다. 생명정보학적 분석법으로 BCR의 V gene usage와 complementarity-determining regions (CDR) 서열을 동정하는 법을 배우고 딥러닝으 로 대규모 DNA 서열과 아미노산 서열을 학습하는 방법을 배운다. 분야 Bio 단계 기초
참여자수
29
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김우연 소속기관 KAIST 과목명 AI in Predicting Protein-Ligand Interaction (structure-based) 강의시간 8 학습목표 1.단백질 구조 기반 Protein-Ligand Interaction 에 대한 다양한 AI 예측 모델들을 살펴본다. 2. 예측의 정확도 및 일반화 측면에서 다양한 방법들의 장단점을 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 al Screening (이주용), Deep learning approach (김동섭), Deep learning frameworks (김학수), Deep learning Basic (김학수 참고자료 981 (2019)), GNN-Torg (JCIM, 59, 4131 (2019)), GNN-Jiang(RSCAdv 20, 20701 (2020)), DeepFusion (JCIM, 61, 1583 (2021)), PoseR 준비사항 x
참여자수
134
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
성명 김화종 소속기관 강원대학교 과목명 신약개발에 필요한 머신러닝 이해 강의시간 9 모듈 학습목표 신약개발에 필요한 화합물 데이터를 다루는 방법을 배우고 화합물의 속성을 수치 테이블로 표현하는 방법, Fingerprint, 그래프 등으로 표현하는 분자 표현형을 설명한다. 머신러닝 모델을 구현하는 방법과 랜덤포레스트, MLP, CNN, Graph CNN 등을 배우고 VAE와 GAN 등 생성 모델을 이용한 분자 생성 방법을 배운다.
참여자수
94
화학 & 화학정보학|