교수자/개설자
-
학습기간
2024-11-07 ~ 2029-12-31
강좌소개
성명 조혜영 소속기관 차의과학대학교 약학대학 강의 명 (주제) 분산형 임상시험 (Decentralized Clinical Trial, DCT) 학습목표 최근 분산형 임상시험(DCT)의 필요성과 현장 수요가 증가되면서 우리나라 정부에서도 글로벌 경쟁력을 강화하고 임상시험 참여 기회를 확대해 신약 접근성을 제고할 수 있도록 DCT 도입을 위한 기반 마련을 지원하고 있으므로 DCT의 개념과 장단점을 이해하고 DCT 수행을 위한 제도적 개선 방향에 대해 검토한다. 분야 □ AI ■ Bio □ Chem ■ Drug 단계 기초
참여자수
6
임상개발 & 임상데이터|
교수자/개설자
-
학습기간
2024-11-07 ~ 2029-12-31
강좌소개
성명 조혜영 소속기관 차의과학대학교 약학대학 강의 명 (주제) 임상약물동력학 (Clinical Pharmacokinetics/Pharmacodynamics) 학습목표 신약개발을 위한 임상시험이나 환자를 치료하는 임상 현장에서 안전하고 효과적인 의약품의 투여 용량과 용법을 결정하는 약동학 및 약력학 지식과 기법을 학습한다. 분야 □ AI □ Bio □ Chem ■ Drug 단계 기초
참여자수
16
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2024-10-10 ~ 2029-12-31
강좌소개
성명 허기영 소속기관 서울대학교병원 강의 명 (주제) 비임상자료에 기반한 임상 약동학 예측 학습목표 약동학(Pharmacokinetics)의 정의와 주요 용어의 의미를 이해하고, 이를 바탕으로 임상시험 자료를 해석한다. 계량약리학(population pharmacokinetics)을 중심으로 비임상-임상 약동학 예측을 위한 방법론을 설명한다. 생리학기반 약동학(PBPK) 및 AI를 활용한 약동학 예측 방법에 대해 설명한다. 분야 Drug 단계 기초
참여자수
50
임상개발 & 임상데이터|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의시간 강의내용 실습여부 1 임상 시험 시뮬레이션 및 최적화 개념 및 사례 소개 필요한 데이터 소개 및 예측 모델 구축/시뮬레이션 방법론 검토 아니오 2 전임상 및 임상 데이터를 활용하여 임상 시험을 시뮬레이션 및 최적화하는 사례에 해당하는 코드를 실습함 (hands-on) 네
참여자수
43
임상개발 & 임상데이터|