Professor
-
Learning Period
11-25-2024 ~ 12-31-2029
Course Introduction
성명 빈진혁 소속기관 연세대학교 의과대학 강의 명 (주제) ML/AI 기반 유전체-단백체 멀티오믹스 통합분석 방법론 학습목표 최근 바이오텍 기술의 발전으로 인해 다양한 레벨의 생명정보 데이터들이 생성 및 축적되고 있으며, 이러한 데이터들을 통합 분석하는 방법론들도 인공지능 기술의 발달과 더불어 활발하게 개발되고 있다. 본 강의에서는 유전체/전사체/단백체 데이터들이 통합되는 방법론과 실제 개발된 툴들을 사용해봄으로써 데이터 통합에 대한 이해 및 경험을 쌓는 것을 목표로 한다. 분야 □ AI ■ Bio □ Chem □ Drug 단계 심화
Students
28
인공지능 & 프로그래밍|
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의시간 강의내용 실습여부 1 마이크로바이옴 연구의 개요 및 연구사례 없음 2 마이크로바이옴 데이터의 이해: 16S rRNA gene sequencing 과 Shotgun metagenomic sequencing 없음 3 마이크로바이옴 데이터의 질 평가: 시퀀싱부터 원시데이터 이해 없음 4 마이크로바이옴 연구 결과 해석을 위해 기본적으로 알아야할 개념: Diversity 및 Taxonomy 없음 5 마이크로바이옴 연구 결과의 이해 및 활용 없음
Students
82
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 최윤재 소속기관 한국과학기술원 과목명 인공지능을 활용한 EMR 데이터 분석 강의시간 6시간 학습목표 전자의무기록의 데이터 구조에 대한 이해 전자의무기록 기반 예측 태스크 이해 전자의무기록의 데이터 전처리 과정 이해 전자의무기록 기반 딥러닝 예측 모델 이해 강의선수 과목 및 준비사항입니다. 선수과목 기계학습 기초 참고자료 해당없음 준비사항 해당없음
Students
30
임상개발 & 임상데이터|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 남진우 소속기관 한양대학교 과목명 차세대 서열분석 강의시간 3 학습목표 1. 차세대서열데이터(NGS)가 무엇인지 이해하고 데이터의 특성에 대해 이해한다.2. 차세대서열데이터(NGS)의 종류와 그 연구목적에 대해 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 생물정보학 개론, 서열분석, 구조분석, 유전자 발현분석 참고자료 - 준비사항 노트북 웹브라우저
Students
83
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2024
Course Introduction
강의 소개 및 개요입니다. 성명 김학수 소속기관 건국대학교 과목명 파이썬 프로그래밍 기초 강의시간 10 학습목표 파이썬 언어의 문법을 익히고 실습을 통해 기본기를 다짐으로써 파이썬 기반 데이터 분석이나 기계학습에 필요한 기본 능력을 배양한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 참고자료 - 준비사항 개인 노트북을 준비하고, 첫 시간에 설명하는 프로그램을 설치해야 함.또한 구글 colab에 접근할 수 있도록 구글 드라이브에 가입해야 함.
Students
168
인공지능 & 프로그래밍|