교수자/개설자
-
학습기간
2024-04-15 ~ 2025-12-31
강좌소개
강의 소개 및 개요 입니다. 성명 김학수 소속기관 건국대학교 과목명 자연어처리 강의시간 6시간 학습목표 1. 자연어처리에 대한 기본 개념을 이해한다. 2. 자연어처리 문제를 기계학습을 통해 해결하는 방법을 이해하고 구현한다. 3. 대용량 언어모델을 이해하고 자연어처리 문제에 적용하는 방법을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 파이썬 프로그래밍, 기계학습 참고자료 준비사항 인터넷 연결 가능한 PC(또는 노트북) 구글 코랩 연결을 위한 구글 드라이브 개인 아이디
참여자수
106
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 남호정 소속기관 GIST 과목명 Lecture : AI in Predicting Drug-protein Interaction(sequence-based) 강의시간 2 학습목표 1. 단백질 서열을 사용하여 화합물-단백질 상호작용을 예측하는 다양한 방법론을 학습한다.2. 기계학습, 딥러닝 기반 화합물-단백질 상호작용 예측 모델들에 대해 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Deep Learning Advanced (inductive bias, self-supervised learning, semi-supervised learning, Attention, Transformeretc.)Graph Deep Learning(GCN, GAT, GIN, GGNN, MPNN, etc.) 참고자료 doi: 10.1093/bib/bbz157doi: 10.1093/bib/bbab046 준비사항 Colab 접속 가능 환경
참여자수
102
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김동섭 소속기관 KAIST 과목명 QSAR 강의시간 5 학습목표 1. QSAR 모델 개발 과정2. 화합물구조의 수식화와 Descriptors3. QSAR를 위한 기계학습법4. Bioactivity prediction5. Proteochemometric modeling
참여자수
129
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의시간 강의내용 실습여부 1 - Self-Supervised Learning이란? - Language 분야에서의 SSL - Computer vision 분야에서의 SSL X 2 - Molecular Graph란? - Graph Neural Networks - Molecular Graph 분야에서의 SSL X
참여자수
31
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2025-12-31
강좌소개
강의 소개 및 개요입니다. 성명 최윤재 소속기관 한국과학기술원 과목명 인공지능을 활용한 EMR 데이터 분석 강의시간 6시간 학습목표 전자의무기록의 데이터 구조에 대한 이해 전자의무기록 기반 예측 태스크 이해 전자의무기록의 데이터 전처리 과정 이해 전자의무기록 기반 딥러닝 예측 모델 이해 강의선수 과목 및 준비사항입니다. 선수과목 기계학습 기초 참고자료 해당없음 준비사항 해당없음
참여자수
35
임상개발 & 임상데이터|