11개의 강의가 검색되었습니다.

교수자/개설자

-

학습기간

2024-03-01 ~ 2024-12-31

강좌소개

강의 소개 및 개요입니다. 성명 석차옥 소속기관 서울대학교 과목명 신약개발을위한단백질구조예측및상호작용예측 강의시간 11 학습목표 1. 첨단 단백질 구조 예측 및 상호작용 예측의 원리를 배우고 예측 가능 범위를 파악한다.2. 신약개발에 활용될 수 있는 관련 소프트웨어 및 웹서버 활용법에 대해 익힌다.   강의 선수과목 및 준비사항입니다. 선수과목  선수과목 또는 관련과목 참고자료  https://www.rcsb.org/ Muhammed, Muhammed Tilahun, and Esin Aki‐Yalcin. "Homology modeling in drug discovery: Overview, current applications,and future perspectives." Chemical biology & drug design 93.1 (2019): 12-20.Ovchinnikov, Sergey, et al. "Protein structure determination using metagenome sequence data." Science 355.6322 (2017): 294- De Vivo M et al. Role of Molecular Dynamics and Related Methods in Drug Discovery. J. Med. Chem. (2016). Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, et al. "Rosetta3 an object-oriented software suite for the simulationand design of macromolecules". Methods Enzymol 487 (2010): 545–574.; Schoeder C T et al. "Modeling Immunity with Rosetta:Methods for Antibody and Antigen Design" Biochemistry 60 (2021): 825−846. C Norn et al, Protein sequence design by explicit energy landscape optimization. PNAS 2021. Mason, Derek M., et al. "Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deeplearning." Nature Biomedical Engineering 5.6 (2021): 600-612.https://wenmr.science.uu.nl/prodigy/https://zhanglab.dcmb.med.umich.edu/SSIPe/ 준비사항  노트북 사용, 사이트 가입, 프로그램 설치 등 준비사항 : FoldIt 웹사이트 가입 (https://fold.it/) : trDesign (https://github.com/gjoni/trDesign) 및 tensorflow 1.13 or 1.14

참여자수

215

수료증

신약개발 & 제약산업|

신약개발을 위한 단백질 구조 예측 및 상호작용 예측

교수자/개설자

-

학습기간

2024-03-01 ~ 2024-12-31

강좌소개

강의시간 강의내용 실습여부 1 천연물 의약품 개발을 위한 예측기술/DB 및 모델링 접근법 소개 -     천연물 개요 및 의약품 개발사례 -     천연물 의약품 개발 연구에 활용 가능한 예측기술 -     천연물 기반 데이터베이스 -     예측모델 개발을 위한 모델링 접근법   2 천연물 데이터 수집 - 천연물 DB 데이터 수집 -     PubChem DB를 활용한 분자구조 데이터 수집 -     PubChem DB를 활용한 Bioassay 데이터 수집 O 3 예측모델 개발을 위한 구조기반 분자표현자 계산 -     분자표현자 기법 소개 -     RDKit을 활용한 분자표현자 계산 -     Mordred를 활용한 분자표현자 계산 -     PaDELPy를 활용한 분자표현자 계산 -     NC-MFP를 활용한 분자표현자 계산 O 4 예측모델 개발을 위한 데이터 전처리 -     데이터 정규화 및 표준화 -     데이터 불균형 문제를 위한 데이터 샘플링 -     데이터 전처리 및 샘플링 기법 구현 O 5 딥러닝 기반 예측모델 개발 및 활용 -     딥러닝 알고리즘 소개 -     DNN 알고리즘 구현 -     DNN 기반 정량/정성 예측모델 개발 및 성능평가 -     DNN 예측모델 활용 O

참여자수

51

수료증

화학 & 화학정보학|

천연물 의약품 개발을 위한 딥러닝 예측기술 활용