교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 남호정 소속기관 GIST 과목명 Lecture : AI in Predicting Drug-protein Interaction(sequence-based) 강의시간 2 학습목표 1. 단백질 서열을 사용하여 화합물-단백질 상호작용을 예측하는 다양한 방법론을 학습한다.2. 기계학습, 딥러닝 기반 화합물-단백질 상호작용 예측 모델들에 대해 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Deep Learning Advanced (inductive bias, self-supervised learning, semi-supervised learning, Attention, Transformeretc.)Graph Deep Learning(GCN, GAT, GIN, GGNN, MPNN, etc.) 참고자료 doi: 10.1093/bib/bbz157doi: 10.1093/bib/bbab046 준비사항 Colab 접속 가능 환경
참여자수
94
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김우연 소속기관 KAIST 과목명 AI in Predicting Protein-Ligand Interaction (structure-based) 강의시간 8 학습목표 1.단백질 구조 기반 Protein-Ligand Interaction 에 대한 다양한 AI 예측 모델들을 살펴본다. 2. 예측의 정확도 및 일반화 측면에서 다양한 방법들의 장단점을 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 al Screening (이주용), Deep learning approach (김동섭), Deep learning frameworks (김학수), Deep learning Basic (김학수 참고자료 981 (2019)), GNN-Torg (JCIM, 59, 4131 (2019)), GNN-Jiang(RSCAdv 20, 20701 (2020)), DeepFusion (JCIM, 61, 1583 (2021)), PoseR 준비사항 x
참여자수
130
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 황상연 소속기관 HITS 과목명 Al 기반 protein-ligand interaction 예측 연구의 최신동향 강의시간 4 학습목표 Al 기반 protein-ligand interaction 예측 연구의 최신 동향 (2022) Protein-ligand interaction (PL) 예측을 위한 딥러닝 모델 연구의 최신 동향을 알아본다. 강의는 논문 리뷰로 진행되며, 2020년도 이후의 주목할 만한 PL 예측 모델 연구들을 살피고 관련하여 결합구조 예측 모델의 일부 또한 살핀다. 강의 선수과목 및 준비사항입니다. 선수과목 (권장) Al in Predicting Drug-Protein Interaction (sequence-based) (권장) Al in Predicting Protein-Ligand Interaction (structure-based) 참고자료 리뷰 대상 논문들 준비사항 없음
참여자수
61
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Big data in precision oncology 강의시간 2 학습목표 1. 대표적인 암유전체데이터베이스인 TCGA/ICGC를 통해 big data의 개요 및 구조를 학습한다 강의 선수과목 및 준비사항입니다. 선수과목 Introduction to NGS data analysis, Genomics analysis, Gene expression analysis, RNA-seq/single cell RNA analysis 참고자료 - 준비사항 -
참여자수
79
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Cancer genome analysis 강의시간 5 학습목표 1. 암유전체의 대표적인 변이 중 돌연변이(mutation) 및 염색체변이(copy number alteration)에 대한 정의 및 대표적인 연구기법 등을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 NGS data analysis, Genomics analysis, Big data in precision oncology 참고자료 준비사항 R+ 기반 실습과목
참여자수
60
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김현욱 소속기관 KAIST 과목명 Disease-Target-Drug relationship analysis from multi-dimensional data 강의시간 1시간 학습목표 1. 소프트웨어 사용을 위한 컴퓨팅 환경 학습2. 약물상호작용, 약물부작용 등 다양한 약물반응의 예측을 위한 머신러닝 기반 프로그램 소개 강의 선수과목 및 준비사항입니다. 선수과목 AI 기초 (Python programing, machine learning); Chemoinformatics 분야 기초 (molecular representation 관련) 및 중급 과목 (특히 RDKit 관련) 참고자료 프로그램 관련 논문들 준비사항 -
참여자수
34
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 구희정 소속기관 스탠다임 과목명 Identifying therapeutic targets using biological graph 강의시간 2 학습목표 1. 질병 타겟의 개념 및 타겟 발굴 방법론 전반에 대해 이해한다.2. 기 구축된 타겟 발굴 방법론의 예를 통해 구체적 접근 방법을 이해한다.
참여자수
24
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 임재창 소속기관 HITS 과목명 Molecule design with deep generative models 강의시간 4 학습목표 1. 다양한 딥러닝 기반 분자 생성모델을 리뷰한다.2. 신약개발에 있어 딥러닝 기반 분자 생성모델의 응용연구에 대해서 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 딥러닝 기초과목 참고자료 - 준비사항 -
참여자수
45
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 이세한 소속기관 Hits 과목명 Molecular Representation Learning & Property Prediction 강의시간 5 학습목표 1. 분자 표현을 이해하고 인공지능 학습에 활용 할 수 있다.2. SMILES, fingerprint, pharmacophore, embedding 등의 분자 구조 표현 방법을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 참고자료 - 준비사항 노트북 사용, discovery studio visualizer & PaDEL 설치
참여자수
40
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김태민 소속기관 가톨릭대학교 과목명 Multiomics analysis 강의시간 2 학습목표 1. 대표적인 암유전체데이터베이스인 TCGA data를 통해 multiomics분석의 특성 및 실제 응용기법들을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 Gene expression analysis, RNA-seq/single cell RNA analysis, Cancer genome analysis 참고자료 - 준비사항 -
참여자수
66
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 정성원 소속기관 가천대학교 과목명 Omics-based Pathway Analysis 강의시간 3 학습목표 1. Pathway analysis 의 목적 및 그 종류에 따른 특징을 이해한다.2. 널리 사용되는 기초적인 pathway analysis 도구의 사용법을 학습하고 추후 다양한 분석 기법의 활용에 도전한다. 강의 선수과목 및 준비사항입니다. 선수과목 - 참고자료 생물정보학 개론, 유전자발현분석, RNA-seq & Single-cell RNA analysis 준비사항 -
참여자수
40
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 Dr. Yugal Sharma 소속기관 CAS 과목명 Overcoming Scientific Data Challenges in AI 강의시간 1 학습목표 1.Explore the critical role of a data foundation in supporting successful artificial intelligence (AI) initiatives.0 2. Share common challenges organizations face when establishing effective strategies for R&D data. 3. Showcase case studies based on real-life examples from CAS, a leader in scientific information solutions that guides the success of R&D digital initiatives of organizations worldwide.
참여자수
8
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김동섭 소속기관 KAIST 과목명 QSAR 강의시간 5 학습목표 1. QSAR 모델 개발 과정2. 화합물구조의 수식화와 Descriptors3. QSAR를 위한 기계학습법4. Bioactivity prediction5. Proteochemometric modeling
참여자수
107
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의시간 강의내용 실습여부 1 - Self-Supervised Learning이란? - Language 분야에서의 SSL - Computer vision 분야에서의 SSL X 2 - Molecular Graph란? - Graph Neural Networks - Molecular Graph 분야에서의 SSL X
참여자수
27
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의시간 강의내용 실습여부 1 임상 시험 시뮬레이션 및 최적화 개념 및 사례 소개 필요한 데이터 소개 및 예측 모델 구축/시뮬레이션 방법론 검토 아니오 2 전임상 및 임상 데이터를 활용하여 임상 시험을 시뮬레이션 및 최적화하는 사례에 해당하는 코드를 실습함 (hands-on) 네
참여자수
42
임상개발 & 임상데이터|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
구조 기반 가상 탐색을 활용한 유효물질발굴과 인공지능을 활용한 유효물질 최적화 강의 과정입니다. 성명 이세한 소속기관 ㈜히츠 과목명 구조 기반 가상 탐색을 활용한 유효물질발굴과 인공지능을 활용한 유효물질 최적화 강의시간 3시간 학습목표 1) 신약 개발 초기 단계에서의 유효물질 발굴을 위한 가상 탐색과2) 발굴한 유효물질의 최적화하기 위한 Hit-to-Lead 기초 이론을 학습한다.
참여자수
52
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의시간 강의내용 실습여부 1 질병 멀티오믹스 데이터에 클러스터링 및 네트워크 분석을 활용한 최신 연구 2 멀티오믹스 데이터 클러스터링 분석의 기초 개념과 적용 사례 3 멀티 오믹스 데이터에 대한 네트워크 분석 적용의 기초 개념과 적용 사례 4 NMF 클러스터링 중심의 멀티오믹스 데이터 클러스터링 분석 실습 O 5 MOFA tool을 활용한 멀티오믹스 데이터 클러스터링 분석 및 해석 실습 O 6 PHONEMES tool을 활용한 멀티오믹스 데이터 네트워크 분석 및 해석 실습 O
참여자수
29
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 허승룡 소속기관 굿인텔리전스 과목명 단백질 서열정렬 알고리즘 구현 실습 강의시간 2시간 학습목표 단백질 서열 정렬에 대한 이해와 pairwise alignment에 대한 프로그램을 구현 할 수 있다. 강의 선수과목 및 준비사항입니다. 선수과목 Python Programming 참고자료 https://gist.github.com/num3ric/1222752 https://3n.wikipedia.org/wiki/Needleman-Wunsch_algorithm https://en.wikipedia.org/wiki/Smith-Waterman_algorithm 준비사항 python3 설치, Linux terminal 환경
참여자수
22
생물학 & 생물정보학|
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의소개 및 개요입니다. 성명 최정모 소속기관 부산대학교 화학과 과목명 단백질-리간드 상호작용 계산을 위한 분자동역학 시뮬레이션 방법 강의시간 4시간 학습목표 분자동역학(molecular dynamics; MD) 시뮬레이션 방법의 기초를 익히고, 신약 개발에 널리사용되는 단백질-리간드 상호작용 계산에 응용한다. 강의 선수과목 및 준비사항입니다. 선수과목 기초화학 참고자료 Smit and Frankel, Understanding Molecular Simulation: From Algorithms to Applications 준비사항 해당없음
참여자수
112
화학 & 화학정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 김준일 소속기관 숭실대학교 과목명 단일세포전사체를 활용한 유전자조절네트워크 분석 강의시간 6시간 학습목표 본 과목에서는 단일세포전사체를 분석하는 방법을 익히고 분석된 데이터를 바탕으로 유전자조 절네트워크를 재구성하며 이를 Cytoscape을 이용하여 분석하는 방법을 익힌다. 강의 선수과목 및 준비사항입니다. 선수과목 선형대수 분자생물학 프로그래밍기초, , R 참고자료 - 리뷰논문: Current best practice in single-cell RNA-seq analysis: a tutorial/Malte Luecken, Fabian Theis 준비사항 - R이 설치되어 있는 컴퓨터
참여자수
77
생물학 & 생물정보학|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의시간 강의내용 실습여부 1 마이크로바이옴 연구의 개요 및 연구사례 없음 2 마이크로바이옴 데이터의 이해: 16S rRNA gene sequencing 과 Shotgun metagenomic sequencing 없음 3 마이크로바이옴 데이터의 질 평가: 시퀀싱부터 원시데이터 이해 없음 4 마이크로바이옴 연구 결과 해석을 위해 기본적으로 알아야할 개념: Diversity 및 Taxonomy 없음 5 마이크로바이옴 연구 결과의 이해 및 활용 없음
참여자수
75
생물학 & 생물정보학|