Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 Dr. Yugal Sharma 소속기관 CAS 과목명 Overcoming Scientific Data Challenges in AI 강의시간 1 학습목표 1.Explore the critical role of a data foundation in supporting successful artificial intelligence (AI) initiatives.0 2. Share common challenges organizations face when establishing effective strategies for R&D data. 3. Showcase case studies based on real-life examples from CAS, a leader in scientific information solutions that guides the success of R&D digital initiatives of organizations worldwide.
Students
19
인공지능 & 프로그래밍|
Professor
-
Learning Period
11-07-2024 ~ 12-31-2029
Course Introduction
성명 조혜영 소속기관 차의과학대학교 약학대학 강의 명 (주제) 분산형 임상시험 (Decentralized Clinical Trial, DCT) 학습목표 최근 분산형 임상시험(DCT)의 필요성과 현장 수요가 증가되면서 우리나라 정부에서도 글로벌 경쟁력을 강화하고 임상시험 참여 기회를 확대해 신약 접근성을 제고할 수 있도록 DCT 도입을 위한 기반 마련을 지원하고 있으므로 DCT의 개념과 장단점을 이해하고 DCT 수행을 위한 제도적 개선 방향에 대해 검토한다. 분야 □ AI ■ Bio □ Chem ■ Drug 단계 기초
Students
20
임상개발 & 임상데이터|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
성명 신민경 소속기관 (주)셀타스퀘어 과목명 인공지능 적용을 위한 약물 감시 및 의약 품 안전성 관리의 기초 강의시간 2시간 학습목표 인공지능 및 디지털 트랜스포메이션 적용을 위해 임상시험부터 허가, 시판 후까지 의약품 전주기 에 해당되는 안전성 관리 시스템과 단계별 데이터를 이해한다.
Students
22
신약개발 & 제약산업|
Professor
-
Learning Period
10-24-2024 ~ 12-31-2029
Course Introduction
성명 송길태 소속기관 부산대학교 강의 명 (주제) Recommendation systems in bioinformatics 학습목표 1. Recommendation systems에 대한 기본 개념을 이해한다. 2. Recommendation systems을 활용하여 표적 단백질 결합 후보 물질 추천 및 바이오마커 발굴 등의 문제를 해결하는 방법을 학습한다. 분야 AI 단계 심화
Students
24
신약개발 & 제약산업|
Professor
-
Learning Period
11-27-2024 ~ 12-31-2029
Course Introduction
목차 (강의시간) 강의내용 실습여부 교수자 1 Streamlit 소개 Streamlit의 기본 개념과 AI/ML 프로젝트에서의 활용 사례 탐구 MolScore Library 의 의 주요 구성 요소 및 역할 소개 Python 환경 설정과 필수 라이브러리 설치 X 신동욱 2 실습: MoleScore 사용한 화합물 생성 목표 설정 Multi-Parameter 설정을 통한 생성 목표 정의 사용자 정의 Scoring Function 클래스 작성 O 신동욱 3 실습: MolScore을 활용한 화합물 학습 사용자 정의 BenchMark 구성 방법 학습 커리큘럼 학습 설정 / 리플레이 버퍼 활용 O 신동욱 4 실습 화합물 : 평가 결과 시각화 및 확장 Streamlit 컴포넌트를 활용한 생성 결과 시각화 MolScore 기본 모니터링 화면 클론코딩 및 응용 O 신동욱 5 실습: Streamlit 기반 Web App 개발 및 배포 스코어링 결과 시각화 및 데이터 저장 결과물 배포 및 공유 O 신동욱
Students
25
인공지능 & 프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 김현욱 소속기관 한국과학기술원(KAIST) 과목명 바이오 네트워크 모델링 강의시간 3시간 학습목표 약물표적 예측을 위한 게놈 수준의 대사모델 구축 및 시뮬레이션에 대한소개 깅의 선수과목 및 준비사항 입니다. 선수과목 생화학 및 프로그래밍에 대한 기본 지식 참고자료 준비사항 노트북 등 컴퓨터
Students
29
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 정세희 소속기관 CAS 과목명 인공지능 및 빅데이터를 활용한 신규 화합물 발굴 강의시간 1시간 학습목표 Explore overall workflow of syntheses of novel compounds using CAS SciFinder Discovery Platform 강의 선수과목 및 준비사항입니다. 선수과목 참고자료 https://www.cas.org/solutions/cas-scifinder-discovery-platform 준비사항
Students
32
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 허승룡 소속기관 굿인텔리전스 과목명 단백질 서열정렬 알고리즘 구현 실습 강의시간 2시간 학습목표 단백질 서열 정렬에 대한 이해와 pairwise alignment에 대한 프로그램을 구현 할 수 있다. 강의 선수과목 및 준비사항입니다. 선수과목 Python Programming 참고자료 https://gist.github.com/num3ric/1222752 https://3n.wikipedia.org/wiki/Needleman-Wunsch_algorithm https://en.wikipedia.org/wiki/Smith-Waterman_algorithm 준비사항 python3 설치, Linux terminal 환경
Students
33
생물학 & 생물정보학|
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의시간 강의내용 실습여부 1 - Self-Supervised Learning이란? - Language 분야에서의 SSL - Computer vision 분야에서의 SSL X 2 - Molecular Graph란? - Graph Neural Networks - Molecular Graph 분야에서의 SSL X
Students
36
인공지능 & 프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 김동휘 소속기관 MERCK 과목명 유기 역합성 (Retrosynthesis) SW를 이용한 효율적인 합성 경로 파악 강의시간 1 학습목표 1. Computer Assisted Synthesis Design(CASD)의 역사와 주요 연구 사례2. CASD를 활용한 적용 사례를 학습하고, 이를 통해 효율적인 합성 경로를 파악한다
Students
38
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
성명 김상수 소속기관 숭실대학교 과목명 신약 타겟 발굴을 위한 exome 시퀀싱의 활용 강의시간 4 학습목표 대규모 인구 집단의 유전체 서열 분석을 통해서 신약 타겟을 발굴한 사례를 리뷰하고, 이 에 관련된 생명정보학 기술에 대한 이론적 소개와 함께, 공개된 데이터 및 분석 소프트웨어 를 활용한 실습을 통하여, 유전체학 기반 신약 개발의 기초를 닦음.
Students
41
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 김재훈 소속기관 카카오브레인 과목명 단백질 언어 모델을 활용한 컨텍트 예측 강의시간 2시간 학습목표 Pre-training 개념을 이해한다. 단백질 서열 데이터를 전처리하여 딥러닝 언어 모델에 학습시킬 수 있다. 학습된 결과를 예측모델에 적용할 수 있다. 강의 선수과목 및 준비사항입니다. 선수과목 Python 참고자료 논문: Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences 준비사항 Jupyter notebook 환경
Students
43
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 이상완 소속기관 KAIST 과목명 인공지능 신약개발을 위한 강화학습 기초 강의시간 6시간 학습목표 본 강의에서는 생물학적 시스템과 같은 복잡한 환경과의 상호작용을 통해 개발자가 설정한 조건을 만족시키는 최적의 시퀀스나 환경 제어 전략을 탐색할 수 있는 강화학습 이론과 기초 알고리즘을 다룬다. 강의 선수과목 및 준비사항입니다. 선수과목 선형대수 기초 참고자료 Sutton and Barto, Reinforcement learning: an introduction 준비사항 강의자료
Students
43
인공지능 & 프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 최윤재 소속기관 한국과학기술원 과목명 인공지능을 활용한 EMR 데이터 분석 강의시간 6시간 학습목표 전자의무기록의 데이터 구조에 대한 이해 전자의무기록 기반 예측 태스크 이해 전자의무기록의 데이터 전처리 과정 이해 전자의무기록 기반 딥러닝 예측 모델 이해 강의선수 과목 및 준비사항입니다. 선수과목 기계학습 기초 참고자료 해당없음 준비사항 해당없음
Students
45
임상개발 & 임상데이터|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 김완규 소속기관 이화여자대학교 과목명 약물-전사체 기반 약물 기전해석 및 신약재창출 강의시간 3 학습목표 1. 약물-전사체 기반 약물 기전 해석의 기본 원리를 이해한다.2. 약물-전사체 기반 신약재창출 기법을 이해한다. 강의 선수과목 및 준비사항입니다. 선수과목 차세대 시퀀싱(NGS) 및 오믹스(전사체) 생명정보 분석 기초 (NGS 데이터 및 Pathway 분석, 클러스터링 기초 지식 등) 참고자료 강의 자료 참조 준비사항 노트북 지참 (권장 사항)
Students
47
생물학 & 생물정보학|
Professor
-
Learning Period
11-12-2024 ~ 12-31-2029
Course Introduction
성명 홍혜숙 소속기관 유빅스테라퓨틱스 강의 명 (주제) 혁신신약 의약품개발의 이해 학습목표 1. 신약 개발 과정의 전반을 이해하고 각 단계의 핵심 요소와 성공적인 개발을 위한 전략을 습득 2. 각국의 신속 허가 프로그램에 대한 이해를 통해 글로벌 신약 개발 전략을 세우는 데 필요한 지식과 실무적 접근법을 습득한다. 분야 □ AI ■ Bio □ Chem □ Drug 단계 기초
Students
49
신약개발 & 제약산업|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 구희정 소속기관 스탠다임 과목명 Identifying therapeutic targets using biological graph 강의시간 2 학습목표 1. 질병 타겟의 개념 및 타겟 발굴 방법론 전반에 대해 이해한다.2. 기 구축된 타겟 발굴 방법론의 예를 통해 구체적 접근 방법을 이해한다.
Students
50
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 김현욱 소속기관 KAIST 과목명 Disease-Target-Drug relationship analysis from multi-dimensional data 강의시간 1시간 학습목표 1. 소프트웨어 사용을 위한 컴퓨팅 환경 학습2. 약물상호작용, 약물부작용 등 다양한 약물반응의 예측을 위한 머신러닝 기반 프로그램 소개 강의 선수과목 및 준비사항입니다. 선수과목 AI 기초 (Python programing, machine learning); Chemoinformatics 분야 기초 (molecular representation 관련) 및 중급 과목 (특히 RDKit 관련) 참고자료 프로그램 관련 논문들 준비사항 -
Students
51
화학 & 화학정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의시간 강의내용 실습여부 1 신약개발을 위한 RWD의 주요 활용 사례를 항암제, 백신 등 주요사례별로 알아보고 연구설계, 분석결과 등을 학습한다. 2 RWD의 활용을 위한 건강보험청구자료, 병원자료, 레지스트리 등 국내 분석 가능한 데이터베이스의 종류와 특징을 설명할 수 있다. 3 유효성 확증을 위한 주요사례로 레지스트리를 외부대조군으로 활용한 적응증 추가 등 주요 사례의 설계 및 실습을 수행한다. 실습 4 유효성 확증을 위한 주요사례로 병원데이터를 외부대조군으로 활용한 적응증 추가 등 주요 사례의 설계 및 실습을 수행한다. 실습
Students
51
임상개발 & 임상데이터|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의시간 강의내용 실습여부 1 질병 멀티오믹스 데이터에 클러스터링 및 네트워크 분석을 활용한 최신 연구 2 멀티오믹스 데이터 클러스터링 분석의 기초 개념과 적용 사례 3 멀티 오믹스 데이터에 대한 네트워크 분석 적용의 기초 개념과 적용 사례 4 NMF 클러스터링 중심의 멀티오믹스 데이터 클러스터링 분석 실습 O 5 MOFA tool을 활용한 멀티오믹스 데이터 클러스터링 분석 및 해석 실습 O 6 PHONEMES tool을 활용한 멀티오믹스 데이터 네트워크 분석 및 해석 실습 O
Students
52
생물학 & 생물정보학|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 이주용 소속기관 강원대학교 화학생화학부 과목명 화학 정보학 데이터베이스 강의시간 2 시간 학습목표 본 수업에서는 화학 정보학에서 자주 사용되는 다양한 데이터 베이스들의 종류와 특징에 대해서 알아본다. 각 데이터베이스에서 신약 개발과 관련된 정보를 찾는 간략한 방법에 관해서 알아본다. 강의 선수과목 및 준비사항입니다. 선수과목 - 일반화학 참고자료 - 준비사항 인터넷이 연결된 컴퓨터와 웹브라우저
Students
52
화학 & 화학정보학|
Professor
-
Learning Period
10-11-2024 ~ 12-31-2029
Course Introduction
성명 박대찬 소속기관 아주대학교 강의 명 (주제) NGS와 AI를 이용한 항체 레퍼토리 (repertoire) 분석 학습목표 생체 내에서 B 세포의 발달 및 B cell receptor (BCR 또는 항체)의 다양성과 항원 특이성이 확보되는 면역학 기초를 배운다. 천문학적인 BCR 다양성 분석을 위해 NGS 기반 BCR 시퀀 싱 데이터를 생산하는 최신 연구 기법을 학습한다. 생명정보학적 분석법으로 BCR의 V gene usage와 complementarity-determining regions (CDR) 서열을 동정하는 법을 배우고 딥러닝으 로 대규모 DNA 서열과 아미노산 서열을 학습하는 방법을 배운다. 분야 Bio 단계 기초
Students
54
인공지능 & 프로그래밍|
Professor
-
Learning Period
03-01-2024 ~ 12-31-2025
Course Introduction
강의 소개 및 개요입니다. 성명 이유한 소속기관 카카오브레인 과목명 그래프 트랜스포머를 활용한 분자물성 예측 강의시간 1시간 학습목표 Attention 알고리즘을 이해한다. 그래프 데이터에 attention이 어떻게 쓰이는지 이해하고, 실습으로 이해도를 높인다. 강의 선수과목 및 준비사항입니다. 선수과목 Attention for Deep Learning 참고자료 A Generalization of Transformer Networks to Graphs (https://arxiv.org/abs/2012.09699?amp=1) 준비사항 우분투 환경
Students
56
화학 & 화학정보학|
Professor
-
Learning Period
11-27-2024 ~ 12-31-2029
Course Introduction
성명 국승호 소속기관 바이오넥서스(BIONEXUS) 강의 명 (주제) 의료이미지 기반 환자진단 및 바이오마커 탐색 학습목표 딥러닝을 활용한 의료이미지 분석의 기초 개념과 기법을 이해하고, 이를 통해 질병 진단 및 바이오마커 탐색을 위한 모델 설계 능력을 기른다. 다양한 의료 데이터를 활용하여 환자 맞춤형 진단 및 예측 모델을 개발하며, 실제 사례를 통해 딥러닝 기반 진단 모델의 응용 가능성과 한계를 파악한다. 분야 v AI v Bio □ Chem □ Drug 단계 심화
Students
58
인공지능 & 프로그래밍|
신약개발 & 제약산업|