교수자/개설자
-
학습기간
2024-11-12 ~ 2029-12-31
강좌소개
성명 강수임 소속기관 미국 콜롬비아 대학교 강의 명 (주제) AI-Powered Drug Discovery 관련 최근 연구동향 파악 학습목표 1. 신약개발에 이용되는 인공지능 모델연구 동향파악 2. 최신 인공지능 신약개발 관련 논문들과 플래폼을 소개 분야 ■ AI □ Bio □ Chem ■ Drug 단계
참여자수
11
인공지능 & 프로그래밍|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2024-10-11 ~ 2029-12-31
강좌소개
성명 박대찬 소속기관 아주대학교 강의 명 (주제) NGS와 AI를 이용한 항체 레퍼토리 (repertoire) 분석 학습목표 생체 내에서 B 세포의 발달 및 B cell receptor (BCR 또는 항체)의 다양성과 항원 특이성이 확보되는 면역학 기초를 배운다. 천문학적인 BCR 다양성 분석을 위해 NGS 기반 BCR 시퀀 싱 데이터를 생산하는 최신 연구 기법을 학습한다. 생명정보학적 분석법으로 BCR의 V gene usage와 complementarity-determining regions (CDR) 서열을 동정하는 법을 배우고 딥러닝으 로 대규모 DNA 서열과 아미노산 서열을 학습하는 방법을 배운다. 분야 Bio 단계 기초
참여자수
21
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-09-12 ~ 2029-12-31
강좌소개
성명 김선, 이선호 소속기관 서울대학교, 아이겐드럭 강의 명 (주제) Deep learning models for drug response prediction 학습목표 약물 반응성 예측의 주요 원리와 연구 동향을 파악하고, 인공지능 약물 반응성 예측을 위한 딥러닝 방법론 및 주요 데이터베이스를 포괄적으로 학습하여 이를 실제 연구에 적용할 수 있는 기본 능력을 배양한다. 분야 AI 단계 심화
참여자수
56
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-09-01 ~ 2029-12-31
강좌소개
성명 선 호 근 소속기관 부산대학교 통계학과 강의 명 (주제) R을 활용한 유전체 빅데이터 통계 분석 (Statistical analysis of high-dimensional genomic data using R) 학습목표 유전체 발현량 데이터와 DNA 메틸화 데이터와 같은 고차원 유전체 데이터를 분석하는 통계적 검정 방법들과 벌점함수 기반 변수선택 방법들을 학습시키고, 통계 패키지 R을 사용하여 실제 유전체 빅데이터를 분석하는 실습을 통해 학생들의 데이터 분석 능력을 향상시킨다. 분야 AI, Bio 단계 기초 및 심화
참여자수
60
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-09-01 ~ 2029-12-31
강좌소개
성명 김동섭 소속기관 한국과학기술원 강의 명 (주제) 단백질 구조 예측 및 단백질 설계를 위한 최신 딥러닝 기술 학습목표 - 단백질 구조 예측의 원리의 이해 - template-based 모델링을 통한 단백질 구조 예측법 이해 및 실습 - Alphafold를 이용한 단백질 구조 예측 모델 이해 및 실습 - 단백질 설계의 필요성 및 원리 이해 RFDiffusion을 사용한 단백질 설계의 이해 및 실습 분야 AI, Bio 단계 심화
참여자수
87
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-04-15 ~ 2024-12-31
강좌소개
강의 소개 및 개요 입니다. 성명 김학수 소속기관 건국대학교 과목명 자연어처리 강의시간 6시간 학습목표 1. 자연어처리에 대한 기본 개념을 이해한다. 2. 자연어처리 문제를 기계학습을 통해 해결하는 방법을 이해하고 구현한다. 3. 대용량 언어모델을 이해하고 자연어처리 문제에 적용하는 방법을 학습한다. 강의 선수과목 및 준비사항입니다. 선수과목 파이썬 프로그래밍, 기계학습 참고자료 준비사항 인터넷 연결 가능한 PC(또는 노트북) 구글 코랩 연결을 위한 구글 드라이브 개인 아이디
참여자수
87
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 Dr. Yugal Sharma 소속기관 CAS 과목명 Overcoming Scientific Data Challenges in AI 강의시간 1 학습목표 1.Explore the critical role of a data foundation in supporting successful artificial intelligence (AI) initiatives.0 2. Share common challenges organizations face when establishing effective strategies for R&D data. 3. Showcase case studies based on real-life examples from CAS, a leader in scientific information solutions that guides the success of R&D digital initiatives of organizations worldwide.
참여자수
8
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의시간 강의내용 실습여부 1 - Self-Supervised Learning이란? - Language 분야에서의 SSL - Computer vision 분야에서의 SSL X 2 - Molecular Graph란? - Graph Neural Networks - Molecular Graph 분야에서의 SSL X
참여자수
27
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 이상완 소속기관 KAIST 과목명 인공지능 신약개발을 위한 강화학습 기초 강의시간 6시간 학습목표 본 강의에서는 생물학적 시스템과 같은 복잡한 환경과의 상호작용을 통해 개발자가 설정한 조건을 만족시키는 최적의 시퀀스나 환경 제어 전략을 탐색할 수 있는 강화학습 이론과 기초 알고리즘을 다룬다. 강의 선수과목 및 준비사항입니다. 선수과목 선형대수 기초 참고자료 Sutton and Barto, Reinforcement learning: an introduction 준비사항 강의자료
참여자수
30
인공지능 & 프로그래밍|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 권진선 소속기관 (주)애임스바이오사이언스 과목명 인공지능 빅데이터 활용 신약개발 연구동향 및 연구사례 강의시간 2시간 학습목표 AI활용 신약 개발 산업 동향 및 연구 동향 파악AI 활용 신약 개발 연구 방향 제언
참여자수
53
인공지능 & 프로그래밍|
신약개발 & 제약산업|
교수자/개설자
-
학습기간
2024-03-01 ~ 2024-12-31
강좌소개
강의 소개 및 개요입니다. 성명 이일구 소속기관 팜캐드 과목명 인공지능을 위한 확률통계 강의시간 5시간 학습목표 인공지능을 위한 기초수학인 기초 확률통계를 학습한다. 기초 확률통계에서는 확률변수와 확률분포가 무엇인지 아는 것 부터 머신러닝에서 많이 쓰이는 Cross entropy, KL divergence까지 학습한다. 그리고 실제 코딩을 통해 이론에서 실습까지 진행한다. 강의 선수과목 및 준비사항입니다.
참여자수
37
인공지능 & 프로그래밍|